The Semigroup of Betti Diagrams

نویسنده

  • DANIEL ERMAN
چکیده

The recent proof of the Boij-Söderberg conjectures reveals new structure about Betti diagrams of modules, giving a complete description of the cone of Betti diagrams. We begin to expand on this new structure by investigating the semigroup of Betti diagrams. We prove that this semigroup is finitely generated, and we answer several other fundamental questions about this semigroup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond Numerics: the Existence of Pure Filtrations

A recent result of Boij-Söderberg and Eisenbud-Schreyer proves that the Betti diagram of any graded module decomposes as a positive rational linear combination of pure diagrams. We consider the follow-up question of whether this numerical decomposition ever corresponds to an actual filtration of the minimal free resolution itself. Our main result is an affirmative answer to this question in man...

متن کامل

Lascoux-style Resolutions and the Betti Numbers of Matching and Chessboard Complexes

This paper generalizes work of Lascoux and Jo zeeak-Pragacz-Weyman computing the characteristic zero Betti numbers in minimal free resolutions of ideals generated by 2 2 minors of generic matrices and generic symmetric matrices, respectively. In the case of 2 2 minors, the quotients of certain polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and we co...

متن کامل

Non-simplicial Decompositions of Betti Diagrams of Complete Intersections

We investigate decompositions of Betti diagrams over a polynomial ring within the framework of Boij–Söderberg theory. That is, given a Betti diagram, we decompose it into pure diagrams. Relaxing the requirement that the degree sequences in such pure diagrams be totally ordered, we are able to define a multiplication law for Betti diagrams that respects the decomposition and allows us to write a...

متن کامل

Minimal Resolutions and the Homology of Matching and Chessboard Complexes

We generalize work of Lascoux and Józefiak-Pragacz-Weyman on Betti numbers for minimal free resolutions of ideals generated by 2× 2 minors of generic matrices and generic symmetric matrices, respectively. Quotients of polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and we compute the analogous Betti numbers for some natural modules over these Segre a...

متن کامل

Betti Numbers of Graded Modules and the Multiplicity Conjecture in the Non-cohen-macaulay Case

Abstract. We use the results by Eisenbud and Schreyer [3] to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination Betti diagrams of modules with a pure resolution. This implies the Multiplicity Conjecture of Herzog, Huneke and Srinivasan [5] for modules that are not necessarily Cohen-Macaulay. We give a combinatorial proof of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008